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Phase Noise in Oscillators—L eeson Formula
Revisited
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Abstract—In thefield of linear feedback-systemsformalism, the
L eeson formulaisauseful tool for the deter mination of phase noise
in feedback oscillators.

Nevertheless, a direct application of the Leeson model without
care can lead to erroneous results because the formula contains
hidden parametersthat are generally unwittingly ill evaluated or
neglected. Thus, a brute-force calculation of phase noise with the
L eeson formula can lead to errors of several orders of magnitude
(i.e., several tens of decibels).

A detailed analysis enables us to enlighten the hidden parame-
tersleading to a modified Leeson formula that is valid for all os-
cillator circuits. It explicitly takesinto account all the parameters
needed for phase-noise calculation.

In order to demonstrate the ease of use and accuracy of the
new formula, we apply it to several oscillator circuitswith lumped
elements, transmission lines, and high-Q resonators. Finally the
analytical results are confirmed by numerical simulations with
a nonlinear transistor model.

Index Terms—Energy stored, Leeson formula, loop gain,
oscillation conditions, oscillators, oscillator @ factor, passive
circuit Q factor, phase of loop gain, phase noise, slope factor.

I. INTRODUCTION

N THE FIELD of linear feedback systems formalism, the
Leeson formula is a useful tool for the determination of
phase noise in feedback oscillators [1]. However, a successful
application requires a careful identification of the parameters
included in the formula according to the oscillator structure.
Fig. 1 shows a conventional representation of a feedback os-
cillator. It includes the following:

« on the one hand, the amplifying device: the transistor;

« on the other hand, the feedback path, which includes the
load conductance, and permits to feedback a small part
of the output signal to the input of the amplifying device
through a selective filter.

Fig. 2 showsalinear representation of the feedback oscillator
in the frequency domain. For phase-noise cal culation purposes,
acarrier voltage of peak value Vj; at the oscillation frequency
wo isimplied at the controlling input port of the transistor.

The amplifying (active) function of the transistor is high-
lighted: the voltage-controlled current source of the transistor
GaoVy isisolated from the passive elements of the transistor
model, which are now included in the passive reciprocal feed-
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Fig. 1. Genera representation of afeedback oscillator.
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Fig. 2. Linear representation of oscillator circuit in the frequency domain.

back path. Through a linear calculation in the frequency do-
main: 1) G0 isthe conventional positive transconductance of
the transistor and 2) the transistor noise is represented by an
input white noise source I, (w,, ). It must be noted that the lin-
earization impliesthat the nonlinear elements are approximated
by their equivalent values calculated for the oscillation ampli-
tude at the oscillation frequency, as described in [2, Ch. 2].

Inthefrequency domain, the noise source I, (w., ) issuch that
(I, (wn) I, (wn)") represents by definition the average power
dissipated by the noise current source in unit resistance and unit
bandwidth [3] [4] centered at angular frequency w,.

Then [5] <[In[2> — S, Afwith Af = 1 Hz.

Findly,

LJ? = 1
(1), = 2
Note that the units of <[In[2> are A?, but <[In[2 has the same

numerical value that the power spectral density S, (with units:
AZ? per Hz).

0018-9480/03$17.00 © 2003 IEEE
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Fig. 3. (8 [Y7] representation of the feedback circuit. (b) [C] chain-matrix
representation of the feedback circuit.

One noi se source aloneisnot always sufficient to characterize
anoisy transistor.

However, in the most genera case, two correlated sources
Inlippys and In2;,5,, are sufficient.

[in[2> becomes

<[In[2> - <[1n1input[2> T <[1nzmput[2>

2R (In15,5 0 0 2input ) -

For phase-noise calculation, this input noise source must be
carefully evaluated according to the localization of the physical
noise sources in the transistor.

Fig. 3(a) and (b) is two equivalent electrical circuits of the
feedback oscillator.

Unfortunately, the Y matrix does not exist for al the pas-
sive circuits so the chain matrix (also called the ABC D ma-
trix), which can always be evaluated, will be used. The matrix
equation of Fig. 4 iswritten as follows:

Wi A B Vo
u)-le olls] @
I C D||-I
withI; = I, and —Ir = G0 V1

Leeson [1], using a single resonator feedback network, has
derived the following formula:

2
wo 1
Tt <2QLoscill> AWQ] ’ &

SA‘Pout = SA(;;,,

1387

Il Iz

A B v,
Gmy.V,
C D

T

Fig. 4. Feedback oscillator with a chain-matrix description of the passive
circuit.
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Fig. 5. (&) Closed-loop representation of the oscillator circuit. (b) Open-loop
transfer function calculation by Bode formalism.

The parameters of (3) must be now identified in order to apply
it to oscillators described by the equivalent circuit of Fig. 4 and

2.

[1. DETERMINATION OF Sa.;,

In the field of linear feedback system formalism, the equiv-
alent closed-loop representation of Fig. 5(a) is deduced. In this
figure, we note Gpyo - Vi = Iout, Vo = Vour; Vi, representsthe
equivalent input noise voltage source dueto /,,.

In order to determine S, , wefirst calculate V;, around the
oscillation frequency wg, which will be determined later. Let
wn = wo + Aw. From Fig. 5(a), we obtain

A
C Cy
where Aqg and Cy are the chain-matrix coefficients taken at wq

()= )

Note that the approximation used in (4) is valid because the
transfer function A/C' is not included in the loop. It does not
participate in the positive feedback. Moreover, the phase noise
is calculated for small frequencies offset from carrier.

The input phase noise spectral density Sag,, can now be
determined.

Vilo, = In

Ao |?
o, 4
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Let uslook at two narrow-band (1 Hz) uncorrelated compo-
nents V,,— and V,, .., respectively, located at angular frequencies
wo — Aw and wg + Aw.

A classical treatment [6], [ 7] shows that by addition to apure
carrier signal of peak value Vj; at the frequency wy, these un-
correlated components give rise to a modulated carrier with a
phase-noise spectral density Sa.,, , which is given at an offset
frequency Aw from the carrier by

(vr)

Voul*

©)

SA‘Pin(Aw) =2

By taking into account (1) and (4), and noting that 7,, isawhite
noise source, we then obtain a white phase-noise spectral den-
sity in a 1-Hz bandwidtht

(i)

Vo |®

2 2

Ao
Co

51,

Voul®

Ao
Co

(6)

SA‘Pin =

In order to simplify the notation in the following calculations,
we define for convenience Ayi, = \/Sa,,. Note that only
Sae,, hasaphysical significance, Ay, isnot useful in itself.

The output transfer function is also calculated near the oscil-
lation frequency. Using the same approximations as for (4), we
can derive from Fig. 5(a)

1—-BGpno 1—DBo - Gumo

Hou A Aw — ~ . 7
tha+ac AG po AoG o 0

Note that if the output transfer function is a function of fre-
quency near w,, AM/PM noise conversion may take place.

I1l. DETERMINATION OF THE OSCILLATION FREQUENCY

In order to find the oscillation frequency, we calculate the
open-loop gain according to the Bode method [9]. By setting
1,, = 0 and opening the feedback loop, Fig. 5(b) is obtained.

We have

IOU
GJWO‘/ext = Iout and — Ct = ‘/1 (8)
The open-loop gain can be written as
S Guro
G= =— 9
V;zxt C ( )

where G denotes the complex voltage gain in the frequency do-
main.

1in thetechnical literature, the phase noise (5) or (6) iscalled the* phase noise
spectral density.” Nevertheless, physically and dimensionally it is apower ratio
as is demonstrated below.
From (1), {|1.,|*) = Sr, Af with S, : spectral power density, and A f = 1

Hz.

{|I..1*}, whichisnumerically equal to 5., , isthen proportional to anoise power
in a 1-Hz bandwidth.

On the other hand, (|Vo1]” . |C|?)/2 is proportional to the carrier power, and
| Ao|? is anumber. Sa,, isthen apower ratio, in a 1-Hz bandwidth, and is
not a spectral density. This misleading denomination of S, (or that of script
L (w) = Sa./2) has been pointed out for along time past, e.g., by Kaertner
in [8]. However, today, the term “ phase noise spectral density” prevailsin rad®
in 1 Hz or in rad?/Hz.
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Oscillation conditions are fulfilled for V; = V.. It follows
that

Gumo _ _ Gumo
C Co
Note that from (10), Cy must be real and negative.
Let C = Cgr + jCr, the oscillation frequency is determined
by

Glwo) =1=— (10)

C[((x)o) =0 (11)
and then C’R(wo) =Co = —Gunmo
IV. DETERMINATION OF THE “LOADED ¢} FACTOR
OF THE OSCILLATOR”
From (9), the loop gain is written as
5 o G o
G=|Gled? =— . 12
IGle o (12
At the oscillation frequency wq
|G+ (wo) =1
@(wg) =0.

From (11) and (12), the phase slope of the loop gain can be
obtained at the oscillation frequency

Cr

do _
=

7o (13)

wo

with C7 = dCp/dw|,, . We denote the “oscillator loaded @
factor” Qroscin as

Wo

Wo
QLoscill(wo) = ?

T2

Wo

dy

_C/T
dw )

Co

(14)

This expression, always positive, is applicable to all feedback
networks independently of the parallel or series tuned nature of
the feedback tank.

It must be noted asageneral rulethat the“oscillator loaded @
factor” Qrscin doesnot coincidewith theloaded ( factor of the
passive circuit. It turns out that these two coefficients coincide
for some elemental feedback networks. However, as a genera
rule, they are different. This difference can reach one or several
orders of magnitude.

Therelevant coefficient for the cal culation of the output phase
noise Qr.oscin 1S proportional to the group delay of the feedback
path. It is directly related to the phase-frequency relationship of
the oscillator loop gain, and can be calculated from (9) (12), and
(14).

Note that the difference between the loaded @ factor of the
passive circuit alone and the “oscillator loaded @} factor” has
been pointed out for one-port negative resistance oscillators in
[10].

V. DETERMINATION OF THE OUTPUT PHASE NOISE

For the output phase-noise determination purposes, the nor-
malized representation of the feedback oscillator showninFig. 6
is deduced from (6), (7), and (10)—(14).
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Fig. 6. Normalized closed-loop representation of a feedback oscillator for
phase noise calculations.

A straightforward calculation gives successively

1
A<:Oin :A<P0ut 1-— d (15)
. ap
14+j—"Aw
dw
1
A<:Oin :A<P0ut 1-— # (16)
145 =L Aw
Co
. Gy
A 011.:A in 1— 17
Pout 90< JO}_AJ (17)
C 2 1
0
SAGon =SApin (1 + <5}> m) . (18)
Finally, from (6),
CARITH: o) 1
Snp = il B S QR 19
Agout [%1[2 CO + C/[ Aw? ( )

Equations (6), (10), (11), (14), and (19) constitute the main re-
sults of this paper.
Near carrier frequency, Sa.,, becomes

(i)

[Vou?

Ao |?

e

1
Aw?’

SAgon = (20)

Equations (19) and (20) must now be compared to the corre-
sponding Leeson formulas recalled below for convenience as
follows:

2
R S 21
Aout Sin < ! <4QioscillAw2>> “

and near carrier frequency

w?
Sagew = Oapin <W> . (22)

We are now in position to discuss and compare the different
formulas by applying them to several oscillator circuits.
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Fig. 7. (&) Colpitts oscillator: the ground node can be placed anywhere.
(b) Electrical equivalent circuit.

V1. APPLICATION—DISCUSSION
A Smple Example: Colpitts Oscillator

Asafirst example, the conventional well-known Colpitts os-
cillator isanalyzed. Fig. 7(a) and (b) showsthe electrical circuit.

A straightforward calculation givesthe terms A and C' of the
chain matrix

A =1— LOyw?+jrCow

L-CiCy

. 7‘01 CQ
w ;
Ci1+C,

CitCy

CIj(Cl—‘rCQ)w 1 (23)

By neglecting »Cyw < 1, we find the following successively.
 The oscillation frequency

C1+ Cy
= . 24
wo = 4/ 1C.Ch (24)
» The coefficient A,
Ch
Ag = ——.
=5 (25)
» The coefficient C,
Co= —p T2 (26)
L
* The coefficient C; = dCr/dw|
Cr = =2(C1 + Cy). (27)
From (19), we obtain
L) 2012 2
Apony — 2< 2> 2 2L 02 2 |: + 27 2:| (28)
Vou|? 7?CH(C1+C2) 4L Aw
and near the carrier frequency
<lfn12> 1 1
Saga,, =2 (29)
7 [Vorl
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Fig. 8. Feedback oscillator with atransmission-line coupled resonator.

Equation (29) clearly shows that, by increasing C;, the output
phase noise is decreased.

At high frequencies, C; generaly reducesto theinput capac-
itance of the transistor alone. The ratio <[In [2> /C% isthenin-
versely proportional to the transistor area and, accordingly, the
output phase noiseisa so inversely proportional tothetransistor
area.

It must be noted that (29) can beeasily evaluated by designers.

If we now write the @ factor of the passive circuit as

Qr

L'UJO
= ,

2
AP g
[‘/01[2 7)2012(01 +02)2

and

SA‘Pin =

it follows from (28) and (29) that

2

W,
Sav.. = SAp., —ao—.
Pont Pin 4Q%Aw2

In the Colpitts oscillator circuit, the “oscillator loaded ¢ factor”
coincides with the loaded @ of the passive circuit.
Example of Evaluation of the Loaded (1..sciin Factor of a
Feedback Oscillator
From (14), we have
-
Co

dp

dw -,

Wo

w
QLoscill(wo) = ? =

2

The hidden parameters included in the Leeson formula may
result in a Qp..scin different from the loaded @ factor @, of the
feedback tank by more than one order of magnitude.

In order to account for such a possible difference, let uslook
at the example of Fig. 8.

Thisexamplehasbeen chosen for itssimplicity. It allowsadi-
rect comparison between an analytical calculation and anumer-
ical simulation. The schematic showsan oscillator circuit, which
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includes a dielectric resonator [11] coupled by means of aloss-
less transmission line of characteristic impedance Z~ = 1/Gr
and electrical length #x at the oscillation frequency. The pur-
pose of introducing thelineisto allow variation in the loaded ()
factor of the oscillator (without simultaneously varying the res-
onant frequency or, to thefirst order, theloaded @ of the passive
circuit) by the varying length.

The admittance brought back by the resonator and its cou-
pling line is written as follows:

Y = Ggr + j2Cre 2% Aw.
The total admittance of the passive circuit becomes

YT = GT + jQCRC_jQQR Aw

with
GT = GR + Gin + Gout + Gload-
Then
dpy,  2Cgcos(20R)
dw o GT )

The loaded (Q factor ;, of the passive circuit can be written as

» GRrb
e <OR+ RR).

GT Wo

Qr

Now, without loss of accuracy, the energy stored in the coupling
line may be practically neglected as compared to that of the
resonator, the loaded @ factor @, of the passive circuit alone
may be approximated to the first order by

Cr
Qr. = w, G_T
The loaded @ factor of the oscillator becomes
W ldov, |
QLoscill(w,) = > | = Qrlcos (26r)].  (30)
By application of (6) and (22), we obtain
2
wWo
Sa.. =Sag. |1
Adpou Adpin [ + <2QL COS(29R)Aw>
2
wo
22 Sag, 31
Ain <2QL COS(29R)Aw> 3D

with
S 2- <[In[2>
A({)i“ - . -
G Ve (wo)?

A wrong application of the Leeson formulawould have given

2
w
SAous. WRONG = SAgy, <m> (32)

S0 that

2
Sae 1
Apout _ . (33)
SAgou WRONG cos(20R)
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Fig. 9. Schematic of the transmission-line coupled resonator oscillator used
for numerical simulations.
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Fig. 10. Output phase-noise spectral density versus the electrical length 6.

We note first that Sa, ..wrone 1S OPtimistic. Besides, when
2.0r tends to «/2, the ratio tends to +oc. In this example,
the loaded (@ factor of the passive circuit is different from the
“loaded @ factor of the oscillator.” It would be an error to con-
fuse these two quantities when evaluating the oscillator phase
noise.

Numerical Smulation

Fig. 9 showsthecircuit simulated with afull nonlinear model
of ahigh electron-mobility transistor (HEMT). The output phase
noise is calculated at the load Gy,

Simulations were performed with a nonlinear frequency-
domain simulator [12].

A stability analysis of the steady-state operating point was
first performed. It showed that, for stable operation, one must
have cos(2.6g) > 0.

Noise analysis was then attempted. Fig. 10 shows the output
phase-noise density obtained at 100 kHz of frequency offset
from the carrier for a white noise input source. Besides as ex-
pected, simulations show that the phase noise rolloff as a func-
tion of the frequency offset from carrier is —20 dB/decade.

Fig. 10 speaksfor itself and confirms the analytical results of
(20) and (31).
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Fig.11. Feedback oscillator with aresonator coupled in transmission between
two transmission lines.

VIl. EXAMPLE OF DETERMINATION OF THE INPUT PHASE
NoOISE IN A FEEDBACK OSCILLATOR

The input phase-noise spectral density is written from (6) as

follows:
(i)

[Vor?

2

(val) _
Vo>

Ao
Co

SA‘Pin =

For afixed “oscillator loaded (2 factor,” the output phase-noise
spectral density varies as | Ao/Co|?, which is a function of the
feedback path configuration.

Asan example, let usconsider the oscillator circuit of Fig. 11.

In the proposed configuration, the dielectric resonator is cou-
pled in transmission between two lossless transmission lines
whose total electrical length is equal to 2.7 at the oscillation
fregquency.

In order to simplify the analytical calculations, we assume
that, in Fig. 11, the input conductance of the transistor, as well
as the SUm Goui + 172 Gloaa e equal to Go. Moreover, the
admittance presented by the feedback circuit at the transistor
output port is also equal to Gy at the oscillation frequency.

Theparameters A, C, C of the chain matrix representing the
feedback circuit are

1
A:__l@+ﬂ+<@—ﬂ>cos(291)
2| n1  no ny N2

+nin % (1 — COS (291) )

G,
B
— né;ZQ ddwR sin (261) Aw
+ 7 |sin(26y) A nin2 n
: ny My G,
ning dB
502 d—wR (1 — cos (26;)) Aw” (34)
C=- |:G0 <@ + E) + ning <GR +J dlew)}
ny N2 dw
(35)
dB
/I = —711712 —dwR (36)

Note that A, C, and C} were calculated around the resonant
frequency wq of the resonator for 6; + 8> = 27 at wo.
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When oscillation conditions are satisfied, we have

Woscillation = &0

Co = — |:G0 <E+ﬂ> +7117’LQGR:| = —2G0 \/ Gp

ny no

(37)
with
=52 (G- 1) (39)
G 1
2_F0 (4 _

ny = an <1 Gp> (39

G?WO
Gp =1 R (40)

It must be noted that, as expected, the oscillation condition (37)
is independent of #;. On the other hand, the loaded (? factor
Qhroscin Of the feedback oscillator is also independent of 6;.
From (14), we have

wWo Gp -1 dBR
4Gr G, dw

However, the term A, depends on ¢; by

QLoscill = (41)

“o

1 —
Ao =—/G, [1 + GGP (cos (261) — jsin (291))} . (42
P
It follows that
(111" 1N o I
s = i (1- —) | @y
v 2G(2J [V01[2 < GP

The main source of error in the input phase-noise spectral den-
sity calculation comes from an erroneous eval uation of theinput
noise voltage V,, by taking loading admittances independently
of the oscillator configuration. The most common error is to
consider a matched input transistor.

Inthislatter case, an indiscriminate application of the Leeson
formula would have given

()

SACimWRONG = ————5.
Pin 3

2G% | Vou|
Then

SA‘Pout SA‘Pin

SAGom WRONG  SAgi WRONG

1 .
=1—(1-—= e
(-g)r

Equation (44) shows that an erroneous application can lead to
an error of = (ZGP)Q.

Noting that G,, can reach up to 10 dB or more in oscillation,
the output phase noise error can reach up to 26 dB or more.

A numerical simulation with anonlinear model of an HEMT
transistor including five nonlinearities has been performed on
a fundamental frequency feedback oscillator and confirms the
analytical linear previsions. The unloaded @ factor of the di-
electric resonator was 3000 and the oscillation frequency was
10 GHz.

2
(44)

|IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 4, APRIL 2003

SAd)out (dBC)

i T I T T I T l T l T I T l T I T

9op( Gopﬁ- 180
04 (degrees)

105 |

Fig. 12. Output phase-noise spectral density versusthe electrical length 6, of
atransmission line in the feedback path.

The power gain of the transistor was 13 dB in oscillation.
Note that the power gain of the transistor must not be confused
with the loop gain of the oscillator.

Fig. 12 shows the output phase-noise spectral density ob-
tained as a function of 6; at 10 kHz of frequency offset from
carrier for awhite noise input current source.

As expected, we found that the oscillation frequency and
output power were independent of #; since the oscillation
conditions (37) are independent of 6.

An important conclusion can be deduced from this ex-
ample. For afixed transistor, loaded () factor of the oscillator,
and input noise current source, the output phase noise can vary
by over 20 dB depending only on the localization of the res-
onator inthefeedback path, which accordingly induces different
values of Say,, .

VIII. INFLUENCE OF THE INPUT CURRENT NOISE SOURCE

In the Leeson model, the input current noise source 1,, isa
white noise source.

We will not discuss here the additional 1/f component,
which can be added from measurement of the frequency corner
f. of the noise source 7,,.

Nevertheless, in our previous calculations, the low fre-
guencies, near dc, of the white noise source spectrum have
been neglected, i.e., the up-conversion has not been taken into
account.

Despite carefully designed bias circuits, the low-frequency
spectrum of the white noise source contributes to the output
phase noise generation.

In fact, the following three uncorrelated components of the
white noise source I,, must be considered:

1) lower sidebands near the carrier;
2) upper sidebands near the carrier;
3) low-frequency component near dc.

The latter creates phase noise by up-conversion.

Our experience in numerical simulation of phase noise en-
ables us to give an order of magnitude of the influence of the
low-frequency component near dc of the white noise source 7,,.
Practically speaking, it generaly plays a lower role than the
RF sidebands. Thus, a more accurate empirical expression of
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S'Ap.w tAKiNg into account the three components can be written

as

out

SA‘PontTOTAL = KSA‘,%M (45)

with 1 < K < 2 depending on the up-conversion factor.
Introducing now the 1/ f component defined by the frequency

corner f.. of the noise source I, resultsin afrequency corner of

SApour 1€ feap

Je
ch(p = ?

(46)
Thisreduction of the phase noise frequency corner as compared
tothat of the noise source aloneis aways observed in numerical
simulations, as well asin experiments.

On the other hand, I, is defined as an input equivalent
noise source. In order to take into account transistor noise
sources localized at the output port of the transistor, e.g.,
the collector shot noise source of a bipolar transistor used
in common emitter configuration, the equivalent input noise
source must be calculated.

The output noise source I,, gives an equivalent input source

< [Ininput

where Ag is the chain-matrix element.
The resulting input phase noise due to the RF sidebands of

2> _ <[Inout

)
47
Ao (47)

L,.,. can be obtained from (6) and (47) as follows:
2 o’} 1 (49)
Apin — [V01[2 CO

Theinput phase noise dueto 7,,_, isindependent of Ag.

This conclusion iseffectively corroborated by numerical sim-
ulations of the output phase noise as a function of Aq for fixed
wo, QLoscil, Co, and C7.

IX. CONCLUSION

A detailed analysis of the output phase noise of feedback os-
cillators has been performed. The results have been compared to
the Leeson formula. The hidden parameters included in the for-
mula have been set off and highlighted in (19) and (20), leading
to anew formulation better suited to design purposes.

The expression of theloaded @ factor of afeedback oscillator
and the definition of the input phase-noise spectral density have
been detailed. The new formulations can be easily applied to
all types of feedback oscillatorsincluding lumped elements and
transmission lines.

The agreement obtained by comparing the analytical calcu-
lations and numerical simulations performed with a realistic
nonlinear transistor model on a nonlinear frequency-domain
simulator confirms the validity of the proposed formulation.
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Finally, it must be noted that the proposed analysis can be
directly extended to oscillator circuits with nonreciprocal ele-
ments such as gyrators, isolators, etc. included in the feedback
path, and for which Auyain = AD — BC # 1.
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