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Abstract—In the field of linear feedback-systems formalism, the
Leeson formula is a useful tool for the determination of phase noise
in feedback oscillators.

Nevertheless, a direct application of the Leeson model without
care can lead to erroneous results because the formula contains
hidden parameters that are generally unwittingly ill evaluated or
neglected. Thus, a brute-force calculation of phase noise with the
Leeson formula can lead to errors of several orders of magnitude
(i.e., several tens of decibels).

A detailed analysis enables us to enlighten the hidden parame-
ters leading to a modified Leeson formula that is valid for all os-
cillator circuits. It explicitly takes into account all the parameters
needed for phase-noise calculation.

In order to demonstrate the ease of use and accuracy of the
new formula, we apply it to several oscillator circuits with lumped
elements, transmission lines, and high- resonators. Finally the
analytical results are confirmed by numerical simulations with
a nonlinear transistor model.

Index Terms—Energy stored, Leeson formula, loop gain,
oscillation conditions, oscillators, oscillator factor, passive
circuit factor, phase of loop gain, phase noise, slope factor.

I. INTRODUCTION

I N THE FIELD of linear feedback systems formalism, the
Leeson formula is a useful tool for the determination of

phase noise in feedback oscillators [1]. However, a successful
application requires a careful identification of the parameters
included in the formula according to the oscillator structure.

Fig. 1 shows a conventional representation of a feedback os-
cillator. It includes the following:

• on the one hand, the amplifying device: the transistor;
• on the other hand, the feedback path, which includes the

load conductance, and permits to feedback a small part
of the output signal to the input of the amplifying device
through a selective filter.

Fig. 2 shows a linear representation of the feedback oscillator
in the frequency domain. For phase-noise calculation purposes,
a carrier voltage of peak value at the oscillation frequency

is implied at the controlling input port of the transistor.
The amplifying (active) function of the transistor is high-

lighted: the voltage-controlled current source of the transistor
is isolated from the passive elements of the transistor

model, which are now included in the passive reciprocal feed-
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Fig. 1. General representation of a feedback oscillator.

Fig. 2. Linear representation of oscillator circuit in the frequency domain.

back path. Through a linear calculation in the frequency do-
main: 1) is the conventional positive transconductance of
the transistor and 2) the transistor noise is represented by an
input white noise source . It must be noted that the lin-
earization implies that the nonlinear elements are approximated
by their equivalent values calculated for the oscillation ampli-
tude at the oscillation frequency, as described in [2, Ch. 2].

In the frequency domain, the noise source is such that
represents by definition the average power

dissipated by the noise current source in unit resistance and unit
bandwidth [3] [4] centered at angular frequency .

Then [5] with Hz.
Finally,

(1)

Note that the units of are A , but has the same
numerical value that the power spectral density (with units:
A per Hz).
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(a)

(b)

Fig. 3. (a) [Y ] representation of the feedback circuit. (b) [C] chain-matrix
representation of the feedback circuit.

One noise source alone is not always sufficient to characterize
a noisy transistor.

However, in the most general case, two correlated sources
and are sufficient.

becomes

For phase-noise calculation, this input noise source must be
carefully evaluated according to the localization of the physical
noise sources in the transistor.

Fig. 3(a) and (b) is two equivalent electrical circuits of the
feedback oscillator.

Unfortunately, the matrix does not exist for all the pas-
sive circuits so the chain matrix (also called the ma-
trix), which can always be evaluated, will be used. The matrix
equation of Fig. 4 is written as follows:

(2)

with and
Leeson [1], using a single resonator feedback network, has

derived the following formula:

(3)

Fig. 4. Feedback oscillator with a chain-matrix description of the passive
circuit.

(a)

(b)

Fig. 5. (a) Closed-loop representation of the oscillator circuit. (b) Open-loop
transfer function calculation by Bode formalism.

The parameters of (3) must be now identified in order to apply
it to oscillators described by the equivalent circuit of Fig. 4 and
(2).

II. DETERMINATION OF

In the field of linear feedback system formalism, the equiv-
alent closed-loop representation of Fig. 5(a) is deduced. In this
figure, we note , ; represents the
equivalent input noise voltage source due to .

In order to determine , we first calculate around the
oscillation frequency , which will be determined later. Let

. From Fig. 5(a), we obtain

where and are the chain-matrix coefficients taken at
and

(4)

Note that the approximation used in (4) is valid because the
transfer function is not included in the loop. It does not
participate in the positive feedback. Moreover, the phase noise
is calculated for small frequencies offset from carrier.

The input phase noise spectral density can now be
determined.
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Let us look at two narrow-band (1 Hz) uncorrelated compo-
nents and , respectively, located at angular frequencies

and .
A classical treatment [6], [7] shows that by addition to a pure

carrier signal of peak value at the frequency , these un-
correlated components give rise to a modulated carrier with a
phase-noise spectral density , which is given at an offset
frequency from the carrier by

(5)

By taking into account (1) and (4), and noting that is a white
noise source, we then obtain a white phase-noise spectral den-
sity in a 1-Hz bandwidth1

(6)

In order to simplify the notation in the following calculations,
we define for convenience . Note that only

has a physical significance, is not useful in itself.
The output transfer function is also calculated near the oscil-

lation frequency. Using the same approximations as for (4), we
can derive from Fig. 5(a)

(7)

Note that if the output transfer function is a function of fre-
quency near , AM/PM noise conversion may take place.

III. DETERMINATION OF THE OSCILLATION FREQUENCY

In order to find the oscillation frequency, we calculate the
open-loop gain according to the Bode method [9]. By setting

and opening the feedback loop, Fig. 5(b) is obtained.
We have

and (8)

The open-loop gain can be written as

(9)

where denotes the complex voltage gain in the frequency do-
main.

1In the technical literature, the phase noise (5) or (6) is called the “phase noise
spectral density.” Nevertheless, physically and dimensionally it is a power ratio
as is demonstrated below.
From (1), jI j = S �f with S : spectral power density, and �f = 1
Hz.
jI j , which is numerically equal toS , is then proportional to a noise power

in a 1-Hz bandwidth.
On the other hand, (jV j : jC j )=2 is proportional to the carrier power, and
jA j is a number. S is then a power ratio, in a 1-Hz bandwidth, and is
not a spectral density. This misleading denomination of S (or that of script
L (!) = S =2) has been pointed out for a long time past, e.g., by Kaertner
in [8]. However, today, the term “phase noise spectral density” prevails in rad
in 1 Hz or in rad /Hz.

Oscillation conditions are fulfilled for . It follows
that

(10)

Note that from (10), must be real and negative.
Let , the oscillation frequency is determined

by

(11)

and then

IV. DETERMINATION OF THE “LOADED FACTOR

OF THE OSCILLATOR”

From (9), the loop gain is written as

(12)

At the oscillation frequency

From (11) and (12), the phase slope of the loop gain can be
obtained at the oscillation frequency

(13)

with . We denote the “oscillator loaded
factor” as

(14)

This expression, always positive, is applicable to all feedback
networks independently of the parallel or series tuned nature of
the feedback tank.

It must be noted as a general rule that the “oscillator loaded
factor” does not coincide with the loaded factor of the
passive circuit. It turns out that these two coefficients coincide
for some elemental feedback networks. However, as a general
rule, they are different. This difference can reach one or several
orders of magnitude.

The relevant coefficient for the calculation of the output phase
noise is proportional to the group delay of the feedback
path. It is directly related to the phase-frequency relationship of
the oscillator loop gain, and can be calculated from (9) (12), and
(14).

Note that the difference between the loaded factor of the
passive circuit alone and the “oscillator loaded factor” has
been pointed out for one-port negative resistance oscillators in
[10].

V. DETERMINATION OF THE OUTPUT PHASE NOISE

For the output phase-noise determination purposes, the nor-
malized representation of the feedback oscillator shown in Fig. 6
is deduced from (6), (7), and (10)–(14).
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Fig. 6. Normalized closed-loop representation of a feedback oscillator for
phase noise calculations.

A straightforward calculation gives successively

(15)

(16)

(17)

(18)

Finally, from (6),

(19)

Equations (6), (10), (11), (14), and (19) constitute the main re-
sults of this paper.

Near carrier frequency, becomes

(20)

Equations (19) and (20) must now be compared to the corre-
sponding Leeson formulas recalled below for convenience as
follows:

(21)

and near carrier frequency

(22)

We are now in position to discuss and compare the different
formulas by applying them to several oscillator circuits.

(a)

(b)

Fig. 7. (a) Colpitts oscillator: the ground node can be placed anywhere.
(b) Electrical equivalent circuit.

VI. APPLICATION—DISCUSSION

A Simple Example: Colpitts Oscillator

As a first example, the conventional well-known Colpitts os-
cillator is analyzed. Fig. 7(a) and (b) shows the electrical circuit.

A straightforward calculation gives the terms and of the
chain matrix

(23)

By neglecting , we find the following successively.

• The oscillation frequency

(24)

• The coefficient

(25)

• The coefficient

(26)

• The coefficient

(27)

From (19), we obtain

(28)

and near the carrier frequency

(29)
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Fig. 8. Feedback oscillator with a transmission-line coupled resonator.

Equation (29) clearly shows that, by increasing , the output
phase noise is decreased.

At high frequencies, generally reduces to the input capac-
itance of the transistor alone. The ratio is then in-
versely proportional to the transistor area and, accordingly, the
output phase noise is also inversely proportional to the transistor
area.

It must be noted that (29) can be easily evaluated by designers.
If we now write the factor of the passive circuit as

and

it follows from (28) and (29) that

In the Colpitts oscillator circuit, the “oscillator loaded factor”
coincides with the loaded of the passive circuit.

Example of Evaluation of the Loaded Factor of a
Feedback Oscillator

From (14), we have

The hidden parameters included in the Leeson formula may
result in a different from the loaded factor of the
feedback tank by more than one order of magnitude.

In order to account for such a possible difference, let us look
at the example of Fig. 8.

This example has been chosen for its simplicity. It allows a di-
rect comparison between an analytical calculation and a numer-
ical simulation. The schematic shows an oscillator circuit, which

includes a dielectric resonator [11] coupled by means of a loss-
less transmission line of characteristic impedance
and electrical length at the oscillation frequency. The pur-
pose of introducing the line is to allow variation in the loaded
factor of the oscillator (without simultaneously varying the res-
onant frequency or, to the first order, the loaded of the passive
circuit) by the varying length.

The admittance brought back by the resonator and its cou-
pling line is written as follows:

The total admittance of the passive circuit becomes

with

Then

The loaded factor of the passive circuit can be written as

Now, without loss of accuracy, the energy stored in the coupling
line may be practically neglected as compared to that of the
resonator, the loaded factor of the passive circuit alone
may be approximated to the first order by

The loaded factor of the oscillator becomes

(30)

By application of (6) and (22), we obtain

(31)

with

A wrong application of the Leeson formula would have given

(32)

so that

(33)
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Fig. 9. Schematic of the transmission-line coupled resonator oscillator used
for numerical simulations.

Fig. 10. Output phase-noise spectral density versus the electrical length � .

We note first that is optimistic. Besides, when
tends to , the ratio tends to . In this example,

the loaded factor of the passive circuit is different from the
“loaded factor of the oscillator.” It would be an error to con-
fuse these two quantities when evaluating the oscillator phase
noise.

Numerical Simulation

Fig. 9 shows the circuit simulated with a full nonlinear model
of a high electron-mobility transistor (HEMT). The output phase
noise is calculated at the load .

Simulations were performed with a nonlinear frequency-
domain simulator [12].

A stability analysis of the steady-state operating point was
first performed. It showed that, for stable operation, one must
have .

Noise analysis was then attempted. Fig. 10 shows the output
phase-noise density obtained at 100 kHz of frequency offset
from the carrier for a white noise input source. Besides as ex-
pected, simulations show that the phase noise rolloff as a func-
tion of the frequency offset from carrier is 20 dB/decade.

Fig. 10 speaks for itself and confirms the analytical results of
(20) and (31).

Fig. 11. Feedback oscillator with a resonator coupled in transmission between
two transmission lines.

VII. EXAMPLE OF DETERMINATION OF THE INPUT PHASE

NOISE IN A FEEDBACK OSCILLATOR

The input phase-noise spectral density is written from (6) as
follows:

For a fixed “oscillator loaded factor,” the output phase-noise
spectral density varies as , which is a function of the
feedback path configuration.

As an example, let us consider the oscillator circuit of Fig. 11.
In the proposed configuration, the dielectric resonator is cou-

pled in transmission between two lossless transmission lines
whose total electrical length is equal to at the oscillation
frequency.

In order to simplify the analytical calculations, we assume
that, in Fig. 11, the input conductance of the transistor, as well
as the sum are equal to . Moreover, the
admittance presented by the feedback circuit at the transistor
output port is also equal to at the oscillation frequency.

The parameters of the chain matrix representing the
feedback circuit are

(34)

(35)

(36)

Note that and were calculated around the resonant
frequency of the resonator for at .
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When oscillation conditions are satisfied, we have

(37)

with

(38)

(39)

(40)

It must be noted that, as expected, the oscillation condition (37)
is independent of . On the other hand, the loaded factor

of the feedback oscillator is also independent of .
From (14), we have

(41)

However, the term depends on by

(42)

It follows that

(43)

The main source of error in the input phase-noise spectral den-
sity calculation comes from an erroneous evaluation of the input
noise voltage by taking loading admittances independently
of the oscillator configuration. The most common error is to
consider a matched input transistor.

In this latter case, an indiscriminate application of the Leeson
formula would have given

Then

(44)

Equation (44) shows that an erroneous application can lead to
an error of .

Noting that can reach up to 10 dB or more in oscillation,
the output phase noise error can reach up to 26 dB or more.

A numerical simulation with a nonlinear model of an HEMT
transistor including five nonlinearities has been performed on
a fundamental frequency feedback oscillator and confirms the
analytical linear previsions. The unloaded factor of the di-
electric resonator was 3000 and the oscillation frequency was
10 GHz.

Fig. 12. Output phase-noise spectral density versus the electrical length � of
a transmission line in the feedback path.

The power gain of the transistor was 13 dB in oscillation.
Note that the power gain of the transistor must not be confused
with the loop gain of the oscillator.

Fig. 12 shows the output phase-noise spectral density ob-
tained as a function of at 10 kHz of frequency offset from
carrier for a white noise input current source.

As expected, we found that the oscillation frequency and
output power were independent of since the oscillation
conditions (37) are independent of .

An important conclusion can be deduced from this ex-
ample. For a fixed transistor, loaded factor of the oscillator,
and input noise current source, the output phase noise can vary
by over 20 dB depending only on the localization of the res-
onator in the feedback path, which accordingly induces different
values of .

VIII. INFLUENCE OF THE INPUT CURRENT NOISE SOURCE

In the Leeson model, the input current noise source is a
white noise source.

We will not discuss here the additional component,
which can be added from measurement of the frequency corner

of the noise source .
Nevertheless, in our previous calculations, the low fre-

quencies, near dc, of the white noise source spectrum have
been neglected, i.e., the up-conversion has not been taken into
account.

Despite carefully designed bias circuits, the low-frequency
spectrum of the white noise source contributes to the output
phase noise generation.

In fact, the following three uncorrelated components of the
white noise source must be considered:

1) lower sidebands near the carrier;
2) upper sidebands near the carrier;
3) low-frequency component near dc.

The latter creates phase noise by up-conversion.
Our experience in numerical simulation of phase noise en-

ables us to give an order of magnitude of the influence of the
low-frequency component near dc of the white noise source .
Practically speaking, it generally plays a lower role than the
RF sidebands. Thus, a more accurate empirical expression of
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taking into account the three components can be written
as

(45)

with depending on the up-conversion factor.
Introducing now the component defined by the frequency

corner of the noise source results in a frequency corner of
, i.e.,

(46)

This reduction of the phase noise frequency corner as compared
to that of the noise source alone is always observed in numerical
simulations, as well as in experiments.

On the other hand, is defined as an input equivalent
noise source. In order to take into account transistor noise
sources localized at the output port of the transistor, e.g.,
the collector shot noise source of a bipolar transistor used
in common emitter configuration, the equivalent input noise
source must be calculated.

The output noise source gives an equivalent input source

(47)

where is the chain-matrix element.
The resulting input phase noise due to the RF sidebands of

can be obtained from (6) and (47) as follows:

(48)

The input phase noise due to is independent of .
This conclusion is effectively corroborated by numerical sim-

ulations of the output phase noise as a function of for fixed
, , , and .

IX. CONCLUSION

A detailed analysis of the output phase noise of feedback os-
cillators has been performed. The results have been compared to
the Leeson formula. The hidden parameters included in the for-
mula have been set off and highlighted in (19) and (20), leading
to a new formulation better suited to design purposes.

The expression of the loaded factor of a feedback oscillator
and the definition of the input phase-noise spectral density have
been detailed. The new formulations can be easily applied to
all types of feedback oscillators including lumped elements and
transmission lines.

The agreement obtained by comparing the analytical calcu-
lations and numerical simulations performed with a realistic
nonlinear transistor model on a nonlinear frequency-domain
simulator confirms the validity of the proposed formulation.

Finally, it must be noted that the proposed analysis can be
directly extended to oscillator circuits with nonreciprocal ele-
ments such as gyrators, isolators, etc. included in the feedback
path, and for which .
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